Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318177

RESUMO

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Assuntos
Glaucoma/metabolismo , Glucose/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ácido Pirúvico/metabolismo , Sirolimo/farmacologia , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Pressão Intraocular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo
2.
J Neuroinflammation ; 17(1): 336, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176797

RESUMO

BACKGROUND: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.


Assuntos
Degeneração Neural/metabolismo , Nervo Óptico/metabolismo , Receptores de Complemento/biossíntese , Receptores de Complemento/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Redes Reguladoras de Genes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Nervo Óptico/patologia , Receptores de Complemento/genética
3.
Mol Neurodegener ; 14(1): 6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670050

RESUMO

BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury.


Assuntos
Glaucoma/patologia , Monócitos/patologia , Degeneração Neural/patologia , Animais , Quimiotaxia de Leucócito , Camundongos , Nervo Óptico/patologia
4.
Cell Death Dis ; 9(6): 705, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899326

RESUMO

The cJun N-terminal kinases (JNKs; JNK1, JNK2, and JNK3) promote degenerative processes after neuronal injury and in disease. JNK2 and JNK3 have been shown to promote retinal ganglion cell (RGC) death after optic nerve injury. In their absence, long-term survival of RGC somas is significantly increased after mechanical optic nerve injury. In glaucoma, because optic nerve damage is thought to be a major cause of RGC death, JNKs are an important potential target for therapeutic intervention. To assess the role of JNK2 and JNK3 in an ocular hypertensive model of glaucoma, null alleles of Jnk2 and Jnk3 were backcrossed into the DBA/2J (D2) mouse. JNK activation occurred in RGCs following increased intraocular pressure in D2 mice. However, deficiency of both Jnk2 and Jnk3 together did not lessen optic nerve damage or RGC death. These results differentiate the molecular pathways controlling cell death in ocular hypertensive glaucoma compared with mechanical optic nerve injury. It is further shown that JUN, a pro-death component of the JNK pathway in RGCs, can be activated in glaucoma in the absence of JNK2 and JNK3. This implicates JNK1 in glaucomatous RGC death. Unexpectedly, at younger ages, Jnk2-deficient mice were more likely to develop features of glaucomatous neurodegeneration than D2 mice expressing Jnk2. This appears to be due to a neuroprotective effect of JNK2 and not due to a change in intraocular pressure. The Jnk2-deficient context also unmasked a lesser role for Jnk3 in glaucoma. Jnk2 and Jnk3 double knockout mice had a modestly increased risk of neurodegeneration compared with mice only deficient in Jnk2. Overall, these findings are consistent with pleiotropic effects of JNK isoforms in glaucoma and suggest caution is warranted when using JNK inhibitors to treat chronic neurodegenerative conditions.


Assuntos
Glaucoma/enzimologia , Glaucoma/patologia , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Hipertensão Ocular/enzimologia , Hipertensão Ocular/patologia , Animais , Axônios/metabolismo , Morte Celular , Ativação Enzimática , Regulação da Expressão Gênica , Glaucoma/fisiopatologia , Pressão Intraocular , Camundongos Endogâmicos DBA , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Degeneração Neural/fisiopatologia , Hipertensão Ocular/fisiopatologia , Nervo Óptico/enzimologia , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Retina/enzimologia , Retina/patologia , Retina/fisiopatologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
5.
Commun Integr Biol ; 11(1): e1356956, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497468

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∼10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes.

6.
Front Neurosci ; 11: 232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487632

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS , decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.

7.
J Neuroinflammation ; 14(1): 93, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446179

RESUMO

BACKGROUND: We previously reported a profound long-term neuroprotection subsequent to a single radiation-therapy in the DBA/2J mouse model of glaucoma. This neuroprotection prevents entry of monocyte-like immune cells into the optic nerve head during glaucoma. Gene expression studies in radiation-treated mice implicated Glycam1 in this protection. Glycam1 encodes a proteoglycan ligand for L-selectin and is an excellent candidate to modulate immune cell entry into the eye. Here, we experimentally test the hypothesis that radiation-induced over-expression of Glycam1 is a key component of the neuroprotection. METHODS: We generated a null allele of Glycam1 on a DBA/2J background. Gene and protein expression of Glycam1, monocyte entry into the optic nerve head, retinal ganglion cell death, and axon loss in the optic nerve were assessed. RESULTS: Radiation therapy potently inhibits monocyte entry into the optic nerve head and prevents retinal ganglion cell death and axon loss. DBA/2J mice carrying a null allele of Glycam1 show increased monocyte entry and increased retinal ganglion cell death and axon loss following radiation therapy, but the majority of optic nerves were still protected by radiation therapy. CONCLUSIONS: Although GlyCAM1 is an L-selectin ligand, its roles in immunity are not yet fully defined. The current study demonstrates a partial role for GlyCAM1 in radiation-mediated protection. Furthermore, our results clearly show that GlyCAM1 levels modulate immune cell entry from the vasculature into neural tissues. As Glycam1 deficiency has a more profound effect on cell entry than on neurodegeneration, further experiments are needed to precisely define the role of monocyte entry in DBA/2J glaucoma. Nevertheless, GlyCAM1's function as a negative regulator of extravasation may lead to novel therapeutic strategies for an array of common conditions involving inflammation.


Assuntos
Glaucoma/metabolismo , Glaucoma/radioterapia , Monócitos/metabolismo , Mucinas/biossíntese , Mucinas/efeitos da radiação , Disco Óptico/metabolismo , Animais , Feminino , Glaucoma/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Disco Óptico/irrigação sanguínea , Nervo Óptico/irrigação sanguínea , Nervo Óptico/metabolismo
8.
Science ; 355(6326): 756-760, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209901

RESUMO

Glaucomas are neurodegenerative diseases that cause vision loss, especially in the elderly. The mechanisms initiating glaucoma and driving neuronal vulnerability during normal aging are unknown. Studying glaucoma-prone mice, we show that mitochondrial abnormalities are an early driver of neuronal dysfunction, occurring before detectable degeneration. Retinal levels of nicotinamide adenine dinucleotide (NAD+, a key molecule in energy and redox metabolism) decrease with age and render aging neurons vulnerable to disease-related insults. Oral administration of the NAD+ precursor nicotinamide (vitamin B3), and/or gene therapy (driving expression of Nmnat1, a key NAD+-producing enzyme), was protective both prophylactically and as an intervention. At the highest dose tested, 93% of eyes did not develop glaucoma. This supports therapeutic use of vitamin B3 in glaucoma and potentially other age-related neurodegenerations.


Assuntos
Envelhecimento/metabolismo , Glaucoma/prevenção & controle , Mitocôndrias/efeitos dos fármacos , NAD/deficiência , Doenças Neurodegenerativas/prevenção & controle , Niacinamida/administração & dosagem , Envelhecimento/patologia , Animais , Senescência Celular , Terapia Genética , Glaucoma/patologia , Camundongos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...